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Abstract
Let (X, ρ) be a discrete metric space. We suppose that the group Z

n acts
freely on X and that the number of orbits of X with respect to this action is
finite. Then we call X a Z

n-periodic discrete metric space. We examine the
Fredholm property and essential spectra of band-dominated operators on lp(X)

when 1 < p < ∞. Our approach is based on the theory of band-dominated
operators on Z

n and their limit operators. In the case where X is the set of
vertices of a combinatorial graph, the graph structure defines a Schrödinger
operator on lp(X) in a natural way. We illustrate our approach by determining
the essential spectra of Schrödinger operators with slowly oscillating potential
both on zig-zag and on hexagonal graphs, the latter being related to nano-
structures.

PACS numbers: 02.30.Tb, 03.65.Db
Mathematics Subject Classification: 81Q10, 46N50, 47B36

1. Introduction

In the past years, spectral properties of Schrödinger operators on quantum graphs have attracted
a lot of attention due to their interesting mathematical properties and due to existing and
expected applications in nano-structures as well (see, for instance, [4, 10, 40]). Quantum
graph models also occur in chemistry and physics (see [28, 39] and [4, 16] and the references
therein). The spectral properties of Schrödinger operators on quantum graphs were studied
by P Kuchment and collaborators in a series of papers [15–20]. Direct and inverse spectral
problems for Schrödinger operators on graphs connected with zig-zag carbon nano-tubes were
considered in [13, 14]. Note that the structure of the spectra of periodic difference operators
is essentially different from the continuous case. For instance, a periodic difference operator
can possess eigenfunctions with compact support ([18, 20]), whereas this cannot happen
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for a periodic differential operator of a second kind, which has an absolutely continuous
spectrum.

It has been pointed out in [5, 27] and [17, 18] that the determination of the spectrum of
a magnetic Laplacian on an equilateral quantum graph (i.e., a graph consisting of identical
segments with the same potentials on them) can be reduced to the study of the spectrum of a
discrete magnetic Laplacian. This observation makes difference operators on combinatorial
graphs to an essential tool in the theory of differential operators on quantum graphs.

The main theme of this paper is the essential spectrum of difference operators (with the
Schrödinger operators as a prominent example) acting on the spaces lp(X) where X is the
set of the vertices of a combinatorial graph �. We exclusively consider discrete graphs � on
which the group Z

n acts freely and which have a finite fundamental domain with respect to
this action.

For every 1 < p < ∞, we introduce a Banach algebraAp(X) of so-called band-dominated
difference operators on lp(X). Following [33, 34] and [35], we associate with every operator
A ∈ Ap(X) a family opp(A) of limit operators and show that an operator A ∈ Ap(X) is
Fredholm on lp(X) if and only if all operators in opp(A) are invertible and if the norms of their
inverses are uniformly bounded. In general, the limit operators of an operator A are simpler
objects than the operator A itself. Thus, the limit operators method often provides an effective
tool to study the Fredholm property of operators in Ap(X).

For operators in the so-called Wiener algebra W(X) (which is a non-closed subalgebra
of every algebra Ap(X)), the uniform boundedness of norms of inverse operators to limit
operators follows already from their invertibility. This basic fact implies the useful identity

spess A =
⋃

Ah∈op A

sp Ah, (1)

where the set of the limit operators of A, the spectra sp Ah of the limit operators of A and,
hence, also the essential spectrum spess A of A, are independent of p.

In the case of X = Z
n, formula (1) was obtained in [33, 35]. In [31], we applied

this formula to electro-magnetic Schrödinger operators on the lattice Z
n. In particular, we

determined the essential spectrum of the Hamiltonian of the 3-particle problem on Z
n.

In [29], one of the authors obtained an identity similar to (1) for perturbed
pseudodifferential operators on R

n. He applied this result to study the location of the essential
spectra of electro-magnetic Schrödinger, square-root Klein–Gordon, and Dirac operators under
general assumptions with respect to the behavior of magnetic and electric potentials at infinity.
On the basis of this method, he also gave a simple and transparent proof of the well-known
Hunziker, van Winter, Zjislin theorem (HWZ-theorem) on the location of essential spectra of
multi-particle Hamiltonians.

It should be noted that formulae similar to (1) have been obtained independently (but
later) in [22] by means of admissible geometric methods. We also mention the papers [9, 8,
24, 3] and the references therein where C∗-algebra techniques were applied to study essential
spectra of Schrödinger operators.

The present paper is organized as follows. In section 2 we collect some auxiliary material
from [35] on matrix band-dominated operators on the lattice Z

n. In section 3 we introduce the
Banach algebra Ap(X) of band-dominated operators acting on lp(X) where X is a periodic
discrete metric space on which the group Z

n acts freely. We construct an isomorphism between
the Banach algebra Ap(X) and the Banach algebra Ap(Zn, C

N) of all (block) band-dominated
operators on lp(Zn, C

N) where N is the number of points in the fundamental domain of X
with respect to the action of Z

n. Applying this isomorphism and the results of section 2, we
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derive necessary and sufficient conditions for an operator A ∈ Ap(X) to be Fredholm. We
also introduce a Wiener algebra W(X) and derive formula (1) for operators in W(X).

For later use, we recall some facts on periodic band-dominated operators in section 4.
An operator A ∈ Ap(X) is periodic if it commutes with each operator Lh of left shift by
h ∈ Z

n. Periodic operators are distinguished by the fact that spess A = sp A. With every
periodic operator A ∈ W(X), there is associated a continuous matrix function σA called the
symbol of A, which owns the property that the eigenvalues of σA give the spectrum of A. In
the terminology of [16, 17], σA is the Floquet transform of A. We prefer to follow the theory
of discrete convolutions and use the discrete Fourier transform to define σA.

In section 5 we consider operators in the Wiener algebra W(X) with slowly oscillating
coefficients. These operators are distinguished by two remarkable properties: their limit
operators are periodic operators, and all limit operators belong to the Wiener algebra again.
Via formula (1) we thus obtain a complete description of the essential spectra of operators
with slowly oscillating coefficients.

In section 6 we apply these results to Schrödinger operators with slowly oscillating
electrical potentials. As already mentioned, every Z

n-periodic graph induces a related
Schrödinger operator in a natural way (it is only this place where the graph structure becomes
important). As illustrations we calculate the essential spectra of Schrödinger operators with
slowly oscillating potentials on the zig-zag graph and on the hexagonal graph. The spectra of
periodic Hamiltonians on zig-zag and hexagonal graphs connected with carbon nano-structures
were considered in [13, 14, 19]. Note that slowly oscillating perturbations of periodic operators
can change the spectrum of the unperturbed operator drastically. For instance, gaps in the
spectrum of the unperturbed operator can be closed by the essential spectrum of the perturbed
operator.

In section 7 we examine the essential spectrum of the Hamiltonian of the motion of two
particles on a periodic graph � around a heavy nucleus. For the lattice � = Z

n we considered
this problem in [31]. See also the papers [1, 2, 21, 25, 26] and the references therein which
are devoted to discrete multi-particle problems.

The limit operators approach does also apply to study the essential spectrum of
pseudodifferential operators on periodic quantum graphs. We plan to develop these ideas
in a forthcoming paper.

The authors are grateful for the support by CONACYT (Project 43432) and by the German
Research Foundation (Grant 444 MEX-112/2/05).

2. Band-dominated operators on Z
n

In this section we fix some notations and recall some facts concerning the Fredholm property
of band-dominated operators on lp(Zn). The Fredholm properties of these operators are
fairly well understood. All details can be found in [33]; see also the monograph [35] for a
comprehensive account.

We will use the following notations. Given a Banach space X, let L(X) refer to the
Banach algebra of all bounded linear operators on X and K(X) to the closed ideal of the
compact operators. An operator A ∈ L(X) is called a Fredholm operator if its kernel
ker A := {x ∈ X : Ax = 0} and its cokernel cokerA := X/A(X) are finite dimensional.
Equivalently, A is Fredholm if the coset A + K(X) is invertible in the Calkin algebra
L(X)/K(X). The essential spectrum of A is the set of all complex numbers λ for which
the operator A − λI is not Fredholm on X, whereas the discrete spectrum of A consists of all
isolated eigenvalues of finite multiplicity. We denote the essential spectrum of A by spess A,
the discrete spectrum by spdis A and the usual spectrum by sp A. Sometimes we also write
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sp(A : X → X) instead of sp A in order to emphasize the underlying space X (with obvious
modifications for the essential and the discrete spectrum). Clearly,

spdis(A) ⊆ sp(A)\spess(A)

for every operator A ∈ L(X). If A is self-adjoint, then equality holds in this inclusion.
Let p � 1 be a real number and n a positive integer. As usual, we write lp(Zn) for the

Banach space of all functions u : Z
n → C for which

‖u‖p

lp(Zn)
:=

∑
x∈Z

n

|u(x)|p < ∞

and l∞(ZN) for the Banach space of all bounded functions u : Z
n → C with norm

‖u‖l∞(Zn) := sup
x∈Z

n

|u(x)|.

For every positive integer N, let lp(Zn)N stand for the Banach space of all vectors
u = (u1, . . . , uN) of functions ui ∈ lp(Zn) with norm

‖u‖p

lp(Zn)N
:=

N∑
i=1

‖ui‖p

lp(Zn)
.

Likewise, one can identify lp(Z)N with the Banach space lp(Zn, C
N) of all functions

u : Z
n → C

N for which

‖u‖p

lp(Zn,CN )
:=

∑
x∈Z

n

N∑
i=1

|uj (x)|p < ∞.

Clearly, the Banach spaces lp(Zn)N and lp(Zn, C
N) are isometric to each other. We also

consider the Banach spaces l∞(Zn)N and l∞(Zn, C
N) with norms

‖u‖l∞(Zn)N := sup
1�i�N

‖ui‖l∞(Zn)

and

‖u‖l∞(Zn,CN ) := sup
x∈Z

n

sup
1�i�N

|ui(x)|.

Again, these spaces are isometric to each other in a natural way. Note also that l∞(Zn, C
N×N)

can be made to a C∗-algebra by providing the matrix algebra C
N×N with a C∗-norm.

We consider operators on lp(Zn, C
N) which are constituted by shift operators and by

operators of multiplication by bounded functions. The latter are defined as follows: For
α ∈ Z

n, the shift operator Vα is the isometry acting on lp(Zn, C
N) by (Vαu)(x) := u(x − α).

Further, each function a in l∞(Zn, C
N×N) induces a multiplication operator aI on lp(Zn, C

N)

via (au)(x) := a(x)u(x). Clearly,

‖aI‖L(lp(Zn,CN )) = ‖a‖l∞(Zn,CN×N ).

A band operator on lp(Zn, C
N) is an operator of the form

A =
∑

|α|�m

aαVα (2)

with coefficients aα ∈ l∞(Zn, C
N×N). The closure in L(lp(Zn, C

N)) of the set of all band
operators is a subalgebra of L(lp(Zn, C

N)). We denote this algebra by A(lp(Zn, C
N)) and

call its elements band-dominated operators (BDO for short). Analogously, band-dominated
operators on l∞(Zn, C

N) are defined.
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Our main tool to study the Fredholm property of band-dominated operators are the
associated limit operators.

Definition 1. Let A ∈ L(lp(Zn, C
N)), and let h : N → Z

n be a sequence tending to infinity.
A linear operator Ah is called the limit operator of A with respect to the sequence h if

V−h(m)AVh(m) → Ah and V−h(m)A
∗Vh(m) → A∗

h

strongly as m → ∞. We let opp A denote the set of all limit operators of A.

Here and in what follows, convergence of a sequence in Z
n to infinity means convergence of

this sequence to infinity in the one-point compactification of Z
n.

There are operators on lp(Zn, C
N) which do not possess limit operators at all. But if A

is a band-dominated operator then one can show via a Cantor diagonal argument that every
sequence h tending to infinity has a subsequence g for which the limit operator Ag exists.
Moreover, the operator spectrum of A stores the complete information on the Fredholm
property of A, as the following theorem states. (In the case of n = 1 there is also a nice
formula for the Fredholm index of A which expresses this index in terms of local indices of
the limit operators of A, see [32].)

Theorem 2. An operator A ∈ A(lp(Zn, C
N)) is Fredholm if and only if all limit operators of

A are invertible and if

sup
Ah∈opp(A)

‖A−1
h ‖ < ∞. (3)

The uniform boundedness condition (3) is often difficult to check: It is one thing to verify
the invertibility of an operator and another one to provide a good estimate for the norm
of its inverse. It is therefore of vital importance to single out classes of band-dominated
operators for which this condition is automatically satisfied. One of these classes is defined
by imposing conditions on the decay of the norms of the coefficients. More precisely, we
consider band-dominated operators of the form

A :=
∑
α∈Z

n

aαVα,

where ∑
α∈Z

n

‖aα‖l∞(Zn,CN×N ) < ∞. (4)

One can show that the set W(Zn, C
N) of all operators with property (4) forms an algebra and

that the term on the left-hand side of (4) defines a norm which makes W(Zn, C
N) to a Banach

algebra. We refer to this algebra as the Wiener algebra and write ‖A‖W(Zn,CN ) for the norm of
an operator in W(Zn, C

N). Clearly, operators in the Wiener algebra are bounded on each of
the spaces lp(Zn, C

N) (including p = ∞) and

‖A‖L(lp(Zn,CN )) � ‖A‖W(Zn,CN ).

Hence, W(Zn, C
N) ⊆ A(lp(Zn, C

N)) for every p.
One important property of the Wiener algebra is its inverse closedness in each of the

algebras L(lp(Zn, C
N)), i.e., if A ∈ W(Zn, C

N) has an inverse in L(lp(Zn, C
N)), then

A−1 belongs to W(Zn, C
N) again. This fact implies that the spectrum of an operator

A ∈ W(Zn, C
N) considered as acting on lp(Zn, C

N) does not depend on p ∈ (1,∞). Also
the operator spectrum opp(A) proves to be independent of p, which justifies to write op A



10114 V S Rabinovich and S Roch

instead. Note finally that all limit operators of operators in the Wiener algebra belong to the
Wiener algebra again.

For operators in the Wiener algebra, the Fredholm criterion in theorem 2 reduces to the
following much simpler assertion.

Theorem 3. Let A ∈ W(Zn, C
N). The operator A is Fredholm on lp(Zn, C

N) if and only if
there exists a p0 ∈ [1,∞] such that all limit operators of A are invertible on lp0(Zn, C

N).

Theorem 3 has the following useful consequence.

Theorem 4. For A ∈ W(Zn, C
N), the essential spectra of A : lp(Zn, C

N) → lp(Zn, C
N) do

not depend on p ∈ (1,∞), and

spess A =
⋃

Ah∈op A

sp Ah. (5)

3. BDO on periodic discrete metric spaces

3.1. Periodic discrete metric spaces

By a discrete metric space we mean a countable set X together with a metric ρ such that every
ball

Br(x0) := {x ∈ X : ρ(x, x0) � r}
is a finite set. For each discrete metric space X, we introduce some standard Banach spaces
over X. For p ∈ (1,∞), let lp(X) denote the Banach space of all complex-valued functions u
on X with norm

‖u‖p

lp(X) :=
∑
x∈X

|u(x)|p,

and write l∞(X) for the Banach space of all bounded functions u of X with norm

‖u‖l∞(X) := sup
x∈X

|u(x)|.

A periodic discrete metric space is a discrete metric space provided with the free action of the
group Z

n. More precisely, let X be a discrete metric space, and let there be a mapping

Z
n × X → X, (α, x) → α · x

satisfying

0 · x = x and (α + β) · x = α · (β · x)

for arbitrary elements α, β ∈ Z
n and x ∈ X, which leaves the metric invariant,

ρ(α · x, α · y) = ρ(x, y) (6)

for all elements α ∈ Z
n and x, y ∈ X. Recall also that the group Z

n acts freely on X if
whenever the equality x = α · x holds for elements x ∈ X and α ∈ Z

n then, necessarily,
α = 0.

For each element x ∈ X, consider its orbit {α · x ∈ X : α ∈ Z
n} with respect to the action

of Z
n. Any two orbits are either disjoint or identical. Hence, there is a binary equivalence

relation on X, by calling two points equivalent if they belong to the same orbit. The set of
all orbits of X with respect to the action of Z

n is denoted by X/Z
n. A basic assumption
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throughout what follows is that the orbit space X/Z
n is finite. Thus, there is a finite subset

M := {x1, x2, . . . , xN } of X such that the orbits

Xj := {α · xj ∈ X : α ∈ Z
n}

satisfy Xi ∩ Xj = ∅ if xi 	= xj and ∪N
i=1Xi = X. If all these conditions are satisfied then we

call X a periodic discrete metric space with respect to Z
n or simply Z

n-periodic.
The free action of Z

n on X guarantees that the mapping

Uj : Z
n → Xj, α �→ α · xj

is a bijection for every j = 1, . . . , N . For each complex-valued function f on X, let
Uf : Z

n → C
N be the function

(Uf )(α) := ((U1f )(α), . . . , (UNf )(α)).

Clearly, the mapping U is a linear isometry from lp(X) onto lp(Zn, C
N), and the mapping

A �→ UAU−1 is an isometric isomorphism from L(lp(X)) onto L(lp(Zn, C
N)) for every

p ∈ [1,∞].
Another consequence of our assumptions is that

lim
Z

n�α→∞
ρ(α · x, y) = ∞ (7)

for all points x, y ∈ X. Indeed, suppose that (7) is wrong. Then there are points x, y ∈ X, a
positive constant M, and a sequence α of pairwise different points in Z

n such that

ρ(α(n) · x, y) � M for all n ∈ N. (8)

The free action of Z
n on X implies that (α(n) · x)n∈N is a sequence of pairwise different points

in X. Hence, (8) implies that the ball with center y and radius M contains infinitely many
points, a contradiction.

3.2. Band-dominated operators on X

Let X be a periodic discrete metric space and p ∈ [1,∞). We consider linear operators A on
lp(X) for which there exists a function kA ∈ l∞(X × X) such that

(Au)(x) =
∑
y∈X

kA(x, y)u(y) for all x ∈ X (9)

and for all finitely supported functions u on X (note that the latter form a dense subspace
of lp(X)). We call kA the generating function of the operator A. It is easily seen that every
bounded operator A on lp(X) is of this form and is, thus, generated by a bounded function. The
converse is certainly not true. It is also clear that every operator A determines its generating
function uniquely, since

(Aδy)(x) = kA(x, y),

where δy is the function on X which is 1 at y and 0 at all other points.
An operator A of the form (9) is called a band operator if there exists an R > 0 such that

kA(x, y) = 0 whenever ρ(x, y) > R.

Example 5. Every operator aI of multiplication by a function a ∈ l∞(X) is a band operator.

Example 6. For α ∈ Z
n, let Tα be the operator of shift by α on lp(X), i.e., (Tαu)(x) :=

u((−α) · x). Clearly, Tα is a band operator which acts as an isometry on lp(X). Hence, every
operator of the form∑

|α|�m

aαTα (10)
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with aα ∈ l∞(X) is a band operator (but there are band operators which cannot be represented
of this form).

Proposition 7. If A is a band operator on lp(X), then UAU−1 is a band operator on
lp(Zn, C

N).

Proof. The operator UAU−1 has the matrix representation

(UAU−1f )i(α) =
N∑

j=1

∑
β∈Z

n

r
ij

A (α, β)fj (β), (11)

where α ∈ Z
n, i = 1, . . . , N and

r
ij

A (α, β) := kA(α · xi, β · xj ). (12)

From (7) we conclude that

ρ(α · xi, β · xj ) = ρ(xi, (β − α) · xj ) → ∞
as |α − β| → ∞. Thus, there is an R1 > 0 such that r

ij

A (α, β) = 0 if |α − β| > R1. In
other words, every r

ij

A is the generating function of a band operator on lp(Zn), implying that
UAU−1 is a band operator on lp(Zn, C

N). �

The preceding proposition implies in particular that every band operator is bounded on lp(X)

for every p ∈ [1,∞]. Let Ap(X) stand for the closure in L(lp(X)) of the set of all band
operators. The operators in Ap(X) are called band-dominated operators on X. Note that
Ap(X) depends heavily on p whereas the class of the band operators is independent of p. One
can show easily (for example, by employing the preceding proposition and the well-known
properties of band-dominated operators on Z

n) that Ap(X) is a Banach algebra for every p
and a C∗-algebra for p = 2.

Proposition 8. Let X be a periodic discrete metric space and p ∈ [1,∞]. The mapping
A �→ UAU−1 is an isomorphism between the Banach algebras Ap(X) and Ap(Zn, C

N).

Proof. Note that an operator A is a band operator on lp(X) if and only if UAU−1 is a
band operator on lp(Zn, C

N). The assertion follows since the mapping A �→ UAU−1 is a
continuous isomorphism between the Banach algebras L(lp(X)) and L(lp(Zn, C

N)). �

3.3. Limit operators and Fredholm property

Let X be a Z
n-periodic discrete metric space. The goal of this section is a criterion for the

Fredholm property of band-dominated operators on lp(X). This criterion makes use of the limit
operators of A which, in a sense, reflect the behavior of A at infinity. Here is the definition.

Definition 9. Let 1 < p < ∞, and h : N → Z
n be a sequence tending to infinity. We say that

Ah is a limit operator of A ∈ L(lp(X)) defined by the sequence h if

T −1
h(m)ATh(m) → Ah and T −1

h(m)A
∗Th(m) → A∗

h as m → ∞
strongly on lp(X) and lp(X)∗ = lq(X) with 1/p + 1/q = 1, respectively. We denote the set of
all limit operators of A ∈ L(lp(X)) by opp(A) and call this set the operator spectrum of A.

Note that the generating function of the shifted operator T −1
α ATα is related with that of A by

kT −1
α ATα

(x, y) = kA((−α) · x, (−α) · y) (13)
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and that the generating functions of T −1
h(m)ATh(m) converge point-wise on X×X to the generating

function of the limit operator Ah if the latter exists.
It is an important property of band-dominated operators that their operator spectrum is

not empty. More general, one has the following result which can be proved by an obvious
Cantor diagonal argument (see [33–35]).

Proposition 10. Let p ∈ (1,∞) and A ∈ Ap(X). Then every sequence h : N → G which
tends to infinity possesses a subsequence g such that the limit operator Ag of A with respect
to g exists.

The following theorem settles the basic relation between the Fredholm property of a band-
dominated operator A and the invertibility of its limit operators. It follows easily from
theorem 2 if one takes into account that the mapping

Ap(X) → Ap(Zn, C
N), A �→ UAU−1

is an isomorphism of Banach algebras and that the relation

(UAU−1)h = UAhU
−1

between the limit operators of A and UAU−1 holds.

Theorem 11. Let p ∈ (1,∞) and A ∈ Ap(X). Then A is a Fredholm operator on lp(X)

if and only if all limit operators of A are invertible and if the norms of their inverses are
uniformly bounded,

sup
Ah∈op(A)

∥∥A−1
h

∥∥ < ∞. (14)

3.4. The Wiener algebra of X

The goal of this section is to single out a class of band-dominated operators for which the
uniform boundedness condition (14) is redundant.

Definition 12. Let X be a Z
n-periodic discrete metric space. The set W(X) consists of all

linear operators A for which there is a function hA in l1(Zn) such that

max
j∈{1,...,N}

N∑
i=1

∣∣rij

A (α, β)
∣∣ � hA(α − β) (15)

for all α, β ∈ Z
n.

We introduce a norm in W(X) by

‖A‖W(X) := inf ‖h‖l1(Zn), (16)

where the infimum is taken over all sequences h ∈ l1(Zn) for which inequality (15) holds in
place of hA.

Proposition 13. The set W(X) with the norm (16) is a Banach algebra, and the mapping
A �→ UAU−1 is an isometric isomorphism between the Banach algebras W(X) and
W(Zn, C

N).

The proof is straightforward. We refer to the algebra W(X) as the Wiener algebra.

Proposition 14. Let p ∈ [1,∞].

(i) Every operator A ∈ W(X) is bounded on each of the spaces lp(X).
(ii) The algebra W(X) is inverse closed in each of the algebras L(lp(X)).
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Proposition 14 follows from proposition 13 and the related results for the special case X = Z
n

presented in [33, 34] and [35].
The following result highlights the importance of the Wiener algebra in our context.

Theorem 15. Let A ∈ W(X). Then A is a Fredholm operator on lp(X) with p ∈ (1,∞) if
and only if there is a p0 ∈ [1,∞] such that all limit operators of A are invertible on lp0(X).
Moreover spess A does not depend on p ∈ (1,∞), and

spess A =
⋃

Ah∈op(A)

sp Ah. (17)

Theorem 15 follows immediately from proposition 13 and theorems 3 and 4.

Corollary 16. Let B := A + aI where A ∈ W(X) and limx→∞ a(x) = 0. Then spess B =
spess A.

The following result states a sufficient condition for the absence of the discrete spectrum of
an operator A ∈ Ap(X).

Proposition 17. Let A ∈ Ap(X) and suppose there is a sequence h : N → Z
n for which the

limit operator Ah exists in the sense of norm convergence,

lim
m→∞

∥∥T −1
hm

AThm
− Ah

∥∥ = 0. (18)

Then spess A = sp A.

Proof. Let λ /∈ spess A. Then, by theorem 11, λ /∈ sp Ah. It follows from (18) that λ /∈ sp A.
Hence, sp A ⊆ spess A, which implies the assertion. �

4. Periodic operators on periodic metric spaces

Let X be a Z
n-periodic discrete metric space. An operator A ∈ L(lp(X)) is Z

n-periodic if it
is invariant with respect to left shifts by elements of Z

n,

TαA = ATα for every α ∈ Z
n.

The following is a straightforward consequence of proposition 17.

Proposition 18. Let A ∈ Ap(X) be a Z
n-periodic operator. Then

spess A = sp A.

Similar results are well known for periodic differential operators (see, e.g. [15]).
An explicit description of the spectrum of Z

n-periodic operators can be given via the
Fourier transform. One easily checks that A ∈ W(X) is Z

n-periodic if and only if the
generating function kA of A is periodic in the sense that, for all γ ∈ Z

n and all points
x, y ∈ X,

kA(γ · x, γ · y) = kA(x, y).

Periodicity thus implies that the functions r
ij

A (α, β) := kA(α · xi, β · xj ) satisfy

r
ij

A (α, β) = kA((α − γ ) · xi, (β − γ ) · xj )
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for all γ ∈ Z
n, whence r

ij

A (α, β) = r
ij

A (α − β, 0). Hence, for i = 1, . . . , N ,

(UAU−1f )i(α) =
N∑

j=1

∑
β∈Z

n

r
ij

A (α, β)(Ujf )(β)

=
N∑

j=1

∑
β∈Z

n

r
ij

A (β, 0)(VβUjf )(α),

where
∣∣rij

A (β, 0)
∣∣ � h(β) for some non-negative function h ∈ l1(Zn). Thus, we obtained the

following.

Proposition 19. Every Z
n-periodic operator A ∈ W(X) is isometrically equivalent to the

shift invariant matrix operator UAU−1 ∈ W(Zn, C
N).

Under the conditions of the previous proposition, we associate with A a function σA : T
n →

C
N×N , called the symbol of A, via

σA(t) :=
∑
β∈Z

n

rA(β)tβ,

where T is the torus {z ∈ C : |z| = 1}, rA(β) is the matrix
(
r

ij

A (β, 0)
)N

i,j=1, and tβ := t
β1
1 . . . t

βn
n

for t = (t1, . . . , tn) ∈ T
n and β = (β1, . . . , βn) ∈ Z

n. It is well known that the operator

(Ãu)(α) :=
∑
β∈Z

n

rA(α − β, 0)u(β)

is invertible on lp(Zn, C
N) with p ∈ [1,∞] if and only if det σA 	= 0 on T

n.
For t ∈ T

n, let λ
j

A(t) with j = 1, . . . , N denote the eigenvalues of the matrix σA(t). The
enumeration of the eigenvalues can be chosen in such a way that λ

j

A(t) depends continuously
on t for every j . The sets

Cj (A) := {
λ ∈ C : λ = λ

j

A(t), t ∈ T
n
}
, j = 1, . . . , N (19)

are called the spectral or dispersion curves of A.

Proposition 20. Let A ∈ W(X) be a Z
n-periodic operator. Then

sp A = spess A =
N⋃

j=1

Cj (A). (20)

5. Operators with slowly oscillating coefficients on periodic metric spaces

Let again X be a Z
n-periodic discrete metric space. A function a ∈ l∞(X) is slowly oscillating

if, for every two points x, y ∈ X,

lim
α→∞(a(α · x) − a(α · y)) = 0. (21)

The set of all slowly oscillating functions on X forms a C∗-subalgebra of l∞(X) which we
denote by SO(X). Note that the class SO(X) does not only depend on X but also on the action
of Z

n on X.
Let a ∈ SO(X) and h : N → G be a sequence tending to infinity. The Bolzano–

Weierstrass theorem and a Cantor diagonal argument imply that there is a subsequence g of
h such that the functions x �→ a(g(m) · x) converge point-wise to a function ag ∈ l∞(X) as
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m → ∞. The condition (21) ensures that the limit function ag is Z
n-periodic on X. Indeed,

for every α ∈ Z
n,

ag(x) − ag(α · x) = lim
m→∞(a(g(m) · x) − (a(g(m) · (α · x))) = 0.

We consider the operators of the form

A =
∞∑

k,l=1

bkAklclI, (22)

where the Akl are Z
n-periodic operators in W(X) and the bk and cl are slowly oscillating

functions satisfying
∞∑

k,l=1

‖bk‖l∞(X)‖Akl‖W(X)‖cl‖l∞(X) < ∞.

Let h : N → Z
n be a sequence tending to infinity. Then

T −1
h(m)ATh(m) =

∞∑
k,l=1

(
T −1

h(m)bk

)
Akl

(
T −1

h(m)cl

)
I.

One can assume without loss that the point-wise limits

lim
m→∞

(
T −1

h(m)bk

)
(x) =: bh

k , lim
m→∞

(
T −1

h(m)cl

)
(x) =: ch

l

exist (otherwise we pass to a suitable subsequence of h). As we have seen above, the limit
functions bh

k and ch
l are Z

n-periodic on X. Consequently, the limit operators Ah of A are
Z

n-periodic operators of the form

Ah =
∞∑

k,l=1

bh
kAklc

h
l I.

Now, the following is an immediate consequence of theorem 15.

Theorem 21. Let A be an operator with slowly oscillating coefficients of the form (22). Then
A is a Fredholm operator on lp(X) if and only if, for every operator Ah ∈ op A,

det σAh
(t) 	= 0 for every t ∈ T

n.

Moreover,

spess A =
⋃

Ah∈op(A)

sp Ah =
⋃

Ah∈op(A)

N⋃
j=1

Cj (Ah).

6. Schrödinger operators on periodic graphs

By a discrete infinite graph we mean a countable set X together with a binary relation ∼ which
is anti-reflexive (i.e., there is no x ∈ X such that x ∼ x) and symmetric and which has the
property that for each x ∈ X there are only finitely many y ∈ X such that x ∼ y. The points
of X are called the vertices and the pairs (x, y) with x ∼ y the edges of the graph. Due to
anti-reflexivity, the graphs under consideration do not possess loops. We write m(x) for the
number of edges starting (or ending) at the vertex x of X. If x ∼ y, we say that the vertices
x, y are adjacent.

For technical reasons it will be convenient to assume that the graph (X,∼) is connected,
i.e., given distinct points x, y ∈ X, there are finitely many points x0, x1, . . . , xn ∈ X such that
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x0 = x, xn = y and xi ∼ xi+1 for i = 0, . . . , n. The smallest number n with this property
defines the graph distance ρ(x, y) of x and y. Together with ρ(x, x) := 0, this defines a
metric ρ on X which makes X to a discrete metric space.

We call (X,∼) a Z
n-periodic discrete graph if it is a connected discrete infinite graph,

if the group Z
n operates freely from the left on X, and if the group action respects the graph

structure, i.e.,

x ∼ y if and only if α · x ∼ α · y

for arbitrary vertices x, y ∈ X and group elements α ∈ Z
n. Clearly, every group with these

properties leaves the graph distance invariant, that is, X becomes a Z
n-periodic discrete metric

space. If (X,∼) is a Z
n-periodic graph, then the function m is Z

n-periodic, too, that is,
m(α · x) = m(x) for every x ∈ X and α ∈ Z

n.
Every Z

n-periodic discrete graph � := (X,∼) induces a canonical difference operator
	� on lp(X), called the (discrete) Laplace operator or Laplacian of �, via

(	�u)(x) := 1

m(x)

∑
y∼x

u(y), x ∈ X. (23)

Evidently, 	� is a Z
n-periodic band operator.

Let v ∈ l∞(X). The operator H� := 	� + vI is referred to as the (discrete)
Schrödinger operator with electric potential v on the graph X. Given a sequence h : N → Z

n

tending to infinity, there exist a subsequence g of h and a function vg ∈ l∞(X) such that
v(g(m) · x) → vg(x) as m → ∞ for every x ∈ X. It turns out that the operator

Hg

� := 	� + vgI

is the limit operator of H� defined by the sequence g and that every limit operator of H� is of
this form. Thus, theorem 15 implies the following.

Theorem 22. The Schrödinger operatorH� = 	�+vI with bounded potential v is a Fredholm
operator on lp(X) with p ∈ (1,∞) if and only if there is a p0 ∈ [1,∞] such that all limit
operators of H� are invertible on lp0(X). The essential spectrum of H� does not depend on
p ∈ (1,∞), and

spess H� =
⋃

Hh
�∈op(H�)

spHh
�. (24)

For an explicit description of the essential spectrum of the Schrödinger operator H� we first
assume that v is a periodic potential. Then UvU−1 is the operator of multiplication by the
diagonal matrix diag(v(x1), . . . , v(xN)). Hence,

UH�U−1 =
∑

α∈{−1,0,1}n
aαVα + diag(v(x1), . . . , v(xN)),

where the aα are certain constant N × N matrices which depend on the structure of the graph
�. Consequently,

σH�
(t) =

∑
α∈{−1,0,1}n

aαtα + diag(v(x1), . . . , v(xN)), t ∈ T
n.

If the potential v is real valued, then H� is self-adjoint on l2(X) and σH�
is a Hermitian

function. From proposition 20 we conclude that

spH� =
N⋃

j=1

Cj (H�),

where Cj (H�) is the real interval [aj , bj ] with aj := mint∈T
n λ

j

H�
(t) and bj := maxt∈T

n λ
j

H�
(t).
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x1 x3

x0 x2

Figure 1. The zig-zag graph.

Next we consider Schrödinger operators H� = 	� + vI with slowly oscillating potential
v. As we have seen in the previous section, all limit operators of H� are of the form

Hg

� = 	� + vgI

with periodic potentials vg . Theorems 22 and 15 imply the following.

Theorem 23. Let H� = 	� + vI with v ∈ SO(X). Then

spess H� =
⋃

Hg

�∈op(H�)

N⋃
j=1

Cj

(
Hg

�

)

with the spectral curves Cj (Hg

�) defined as in (19).

If the slowly oscillating potential v is real valued, then the spectral curves Cj

(
Hg

�

)
are (possibly

overlapping) real intervals.
The following examples clarify the structure of the essential spectrum of Schrödinger

operators on some special periodic graphs. The graphs under consideration are embedded into
R

n for some n. This embedding allows one to consider the vertices of the graph as vectors and
to use the linear structure of R

n in order to describe the group action. Note that we consider
slowly oscillating potentials in these examples. The case of periodic potentials was studied in
[13, 14, 19].

Example 24 (The zig-zag graph). Let � = (X,∼) be the zig-zag graph in the plane R
2 as

shown in figure 1. The graph � is periodic with respect to the action g · xn := xn+2g of the
group Z, and the set M = {x1, x2} of vertices represents the fundamental domain.

One should mention that, as a graph, the zig-zag graph is isomorphic to the Cayley graph
of the group Z and, in both cases, it is the same group Z which acts on the graph. The
difference lies in the way in which Z acts. For the Cayley graph, the group element α maps
the vertex x to α + x, whereas α maps x to 2α + x for the zig-zag graph. The latter action is
visualized by the zig-zag form.

The operator U	�U−1 has the matrix representation

U	�U−1 = 1

2

(
0 I + V(1,0)

I + V(−1,0) 0

)
in the basis induced by M. Hence,

σ	�
(t) = 1

2

(
0 1 + t

1 + t−1 0

)
, t ∈ T,

and a straightforward calculation shows that the spectral curves of 	� are

{λ ∈ C : λ = ± cos2 ϕ/2, ϕ ∈ [0, 2π ]}.
Hence, the spectrum of the Laplacian 	� of the zig-zag graph is the interval [−1, 1].
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Next consider the Schrödinger operator H� := 	� +vI with Z-periodic potential v. Thus,
v is completely determined by its values on M, and we write v1 := v(x1) and v2 := v(x2).
Then

σH�−λI (t) =
(

v1 − λ (1 + t)/2
(1 + t−1)/2 v2 − λ

)
, t ∈ T,

which implies that the spectral curves of H� are{
λ ∈ C : λ = 1

2
±

√
(v1 − v2)2 + 4 cos2 ϕ/2

2(v1 + v2)
, ϕ ∈ [0, 2π ]

}
.

If, for example, v1 and v2 are real numbers with v1 < v2, then spess H� = spH� is the union
of the disjoint intervals[

1

2
−

√
(v1 − v2)2 + 4

2(v1 + v2)
,

v1

v1 + v2

] ⋃ [
v2

v1 + v2
,

1

2
+

√
(v1 − v2)2 + 4

2(v1 + v2)

]
, (25)

that is, one observes a gap ( v1
v1+v2

, v2
v1+v2

) in the spectrum.
Finally, let the potential v be slowly oscillating. Then the essential spectrum of H� is the

union

⋃
h


1

2
−

√(
vh

1 − vh
2

)2
+ 4

2
(
vh

1 + vh
2

) ,
min

{
vh

1 , vh
2

}
vh

1 + vh
2




⋃
h


max

{
vh

1 , vh
2

}
vh

1 + vh
2

,
1

2
+

√(
vh

1 − vh
2

)2
+ 4

2
(
vh

1 + vh
2

)

 ,

(26)

where the unions are taken with respect to all sequences h for which the limits

vh
j := lim

m→∞ v(h(m) · xj ), j = 1, 2, (27)

exist. Set

aH�
:= lim sup

Z�α→∞

v(α · x1)

v(α · x1) + v(α · x2)
,

bH�
:= lim inf

Z�α→∞
v(α · x2)

v(α · x1) + v(α · x2)
.

Thus, if the inequality

aH�
< bH�

(28)

holds, then the operator H� has the gap
(
aH�

, bH�

)
in its essential spectrum. Of course, this

interval can contain points of the discrete spectrum of H� .

Example 25. [The honeycomb graph] Let � = (X,∼) be the hexagonal graph shown in
figure 2. We consider this graph as embedded into R

2 and let e1 and e2 be the vectors indicated
in the figure. The group Z

2 operates on � via

(α1, α2) · x := x + α1e1 + α2e2

(where α1, α2 ∈ Z and x ∈ X). A fundamental domain M for this action is provided by any
two vertices x1, x2 as marked in the figure.

Hence, we have to identify lp(X) with lp(Z2, C
2), and the Laplacian 	� has the following

matrix representation with respect to M

U	�U−1 = 1

3

(
0 I + Ve1 + Ve2

I + V −1
e1

+ V −1
e2

0

)
.
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η

η

Figure 2. The honeycomb graph.

(This figure is in colour only in the electronic version)

Consequently,

σ	�
(t) = 1

3

(
0 1 + t1 + t2

1 + t−1
1 + t−1

2 0

)
, t = (t1, t2) ∈ T

2,

and the spectral curves of the Laplacian 	� are

C± := {λ ∈ C : λ = ±|1 + eiϕ1 + eiϕ2 |/3, ϕ1, ϕ2 ∈ [0, 2π ]}.
The curves C± coincide with the intervals [0, 1] and [−1, 0], respectively, whence sp 	� =
[−1, 1].

Let now v be a Z
2-periodic potential and set vj := v(xj ) for j = 1, 2. A calculation

similar to example 24 yields that the spectral curves of the Schrödinger operatorH� := 	�+vI

are {
λ ∈ C : λ = 1

2
±

√
(v1 − v2)2 + 4µ(ϕ1, ϕ2)

2(v1 + v2)

}
,

where

µ(ϕ1, ϕ2) := |1 + eiϕ1 + eiϕ2 |2/9, ϕ1, ϕ2 ∈ [0, 2π ].

Hence, as in example 24, spess H� = spH� is given by the union (25).
Let finally v be a slowly oscillating potential on X. Since the image of the function µ is

the interval [0, 1], the essential spectrum of the Schrödinger operator on the honeycomb graph
� is given by formulae (26) and (27). If the condition (28) holds, then a gap

(
aH�

, bH�

)
occurs

in the essential spectrum of H� .

7. A three-particle problem

Let � := (X,∼) be a Z
n-periodic discrete graph. We consider the Schrödinger operator

Hu := 	� ⊗ IX + IX ⊗ 	� + (W1IX) ⊗ IX + IX ⊗ (W2IX) + W12I (29)
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on l2(X×X). This operator describes the motion of two particles with coordinates x1, x2 ∈ X

with masses 1 on the graph � around a heavy nuclei located at the point x0 ∈ X. Therefore,
H is called a 3-particle Schrödinger operator. In (29), 	� is again the Laplacian on the graph
�, IX is the identity operator on l2(X), I = IX ⊗ IX is the identity operator on l2(X × X),W1

and W2 are real-valued functions on X defined by

Wj(x
j ) = wj(ρ(xj , x0)), j = 1, 2,

and W12 is a real-valued function on X × X given by

W12(x
1, x2) = w12(ρ(x1, x2)).

Here ρ denotes the given metric on X, and w1, w2 and w12 are functions on [0,∞) which
satisfy

lim
z→∞ w1(z) = lim

z→∞ w2(z) = lim
z→∞ w12(z) = 0.

Clearly, H is a band operator on l2(X × X). We are going to describe its essential spectrum
via formula (24), for which we need the limit operators of H and their spectra. Note that the
spectrum of the Laplacian 	� depends on the structure of the graph � and that this spectrum
has a band structure (= is the union of closed intervals). In examples 24 and 25 we had
sp 	� = [−1, 1].

We agree upon the following notation. For non-empty subsets E,F of R, we let

E + F := {z ∈ R : z = x + y, x ∈ E, y ∈ F }
denote their algebraic sum and set 2E := E + E.

Let g = (g1, g2) : N → Z
n ×Z

n be a sequence tending to infinity. We have to distinguish
the following cases (all other possible cases can be reduced to these cases by passing to suitable
subsequences of g):

Case 1. The sequence g1 tends to infinity, whereas g2 is constant. Then the limit operator Hg

of H is unitarily equivalent to the operator

H2 := 	� ⊗ IX + IX ⊗ (	� + W2IX). (30)

Case 2. Here g2 tends to infinity and g1 is constant. Then the limit operator Hg of H is
unitarily equivalent to the operator

H1 := (	� + W1IX) ⊗ IX + IX ⊗ 	�. (31)

Case 3. Both g1 and g2 tend to infinity. There are two subcases:

Case 3a. The sequence g1 − g2 tends to infinity. In this case the limit operator is the free
discrete Hamiltonian

	� ⊗ IX + IX ⊗ 	�

the spectrum of which is 2 sp 	� .

Case 3b. The sequence g1 − g2 is constant. Then the limit operator Hg of H is unitarily
equivalent to the operator of interaction

H12 := 	� ⊗ IX + IX ⊗ 	� + W12I. (32)
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Note that the operators H1,H2 and H12 are invariant with respect to shifts by elements of the
form (0, g), (g, 0) and (g, g) of Z

n × Z
n, respectively. It follows from proposition 17 that

these operators do not possess discrete spectra. From formula (24) we further conclude

spess H = spH1 ∪ spH2 ∪ spH12. (33)

The following proposition is well known. For a proof see [36], theorem VIII.33 and its
corollary.

Proposition 26. Let A ∈ L(H) and B ∈ L(K) be bounded self-adjoint operators on Hilbert
spaces H,K . Then

sp(A ⊗ IK + IH ⊗ B) = sp A + spB.

In our setting, this proposition implies that

spH2 = sp 	� + sp(	� + W2IX).

Since the Schrödinger operator 	� + W2IX is a compact perturbation of the Laplacian 	� ,
one has

spess(	� + W2IX) = sp 	� ∪ {
λ

(2)
k

}∞
k=1,

where {λ(2)
k }∞k=1 is the sequence of the eigenvalues of 	� + W2IX which are located outside

the spectrum of 	� . Thus,

spH2 = 2 sp 	� + ∪∞
k=1

(
λ

(2)
k + sp 	�

)
.

In the same way one finds

spH1 = 2 sp 	� + ∪∞
k=1

(
λ

(1)
k + sp 	�

)
,

where the λ
(1)
k run through the points of the discrete spectrum of 	� + W1IX which are located

outside the spectrum of 	� .
Recall that in examples 24 and 25, sp 	� = [−1, 1]. Hence, in the context of these

examples,

spHj = [−2, 2]
∞⋃

k=1

[
λ

(j)

k − 1, λ
(j)

k + 1
]
.

One can also give a simple estimate for the location of the spectrum of H12 by means of the
following well-known result (see, e.g., [23], p 357).

Proposition 27. Let A be a bounded self-adjoint operator on the Hilbert space H. Then
{a, b} ⊆ sp A ⊆ [a, b] where

a := inf
‖h‖=1

〈Ah, h〉, b := sup
‖h‖=1

〈Ah, h〉.

This observation implies the following inclusions for the spectra of the operators H1,H2 and
H12. For j = 1, 2 one has

2 sp 	� ⊆ spHj ⊆ 2 sp 	� +
[

inf
x∈X

Wj(x), sup
x∈X

Wj(x)
]
,

whereas

2 sp 	� ⊆ spH12 ⊆ 2 sp 	� +
[

inf
y∈X×X

W12(y), sup
y∈X×X

W12(y)
]
.
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In the context of examples 24 and 25, these inclusions specify to

[−2, 2] ⊆ spHj ⊆ [−2 + inf
x∈X

Wj(x), 2 + sup
x∈X

Wj(x)
]
,

[−2, 2] ⊆ spH12 ⊆ [−2 + inf
x∈X×X

W12(x), 2 + sup
x∈X×X

W12(x)
]
.

Thus, by theorem 22,

spess H ⊆ [m − 2,M + 2],

where

m := min
{

inf
x∈X

W1(x), inf
x∈X

W2(x), inf
x∈X×X

W12(x)
}
,

M := max
{

sup
x∈X

W1(x), sup
x∈X

W2(x), sup
x∈X×X

W12(x)
}
.
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